Topo
pesquisar

Teorema de Laplace

Matemática

Nos cálculos dos determinantes, as regras práticas se estendem, em sua maioria, apenas para as matrizes quadradas de ordem igual ou menor que três. Para calcular o determinante das demais, é necessário usar o teorema de Laplace.

Para o cálculo de determinantes de matrizes quadradas de ordem menor ou igual a 3 (n≤3), temos algumas regras práticas para realizar estes cálculos. Entretanto, quando a ordem é superior a 3 (n>3), muitas destas regras não são aplicáveis.

Por isso veremos o teorema de Laplace, que, utilizando o conceito do cofator, conduz o cálculo dos determinantes para regras que se aplicam a quaisquer matrizes quadradas.

O teorema de Laplace consiste em escolher uma das filas (linha ou coluna) da matriz e somar os produtos dos elementos dessa fila pelos seus respectivos cofatores.

Ilustração algébrica:

Vejamos um exemplo:

Calcule o determinante da matriz C, utilizando o teorema de Laplace:

De acordo com o teorema de Laplace, devemos escolher uma fila (linha ou coluna) para calcular o determinante. Vamos utilizar a primeira coluna:

Precisamos encontrar os valores dos cofatores:

 

Sendo assim, pelo teorema de Laplace, o determinante da matriz C é dado pela seguinte expressão:

 

Note que não foi preciso calcular o cofator do elemento da matriz que era igual a zero, afinal, ao multiplicarmos o cofator, o resultado seria zero de qualquer forma. Diante disso, quando nos depararmos com matrizes que possuem muitos zeros em alguma de suas filas, a utilização do teorema de Laplace se torna interessante, pois não será necessário calcular diversos cofatores.

Vejamos um exemplo deste fato:

Calcule o determinante da matriz B, utilizando o teorema de Laplace:

 

Veja que a segunda coluna é a fila que possui maior quantidade de zeros, portanto utilizaremos esta fila para calcular o determinante da matriz através do teorema de Laplace.

 

Portanto, para determinar o determinante da matriz B, basta encontrar o cofator A22.

 

Sendo assim, podemos finalizar os cálculos do determinante:

det B = (- 1) . (- 65) = 65

 


Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe Brasil Escola

DEIXE SEU COMENTÁRIO
  • roberto juniorquinta-feira | 19/03/2015 14:29Hs
    muito bom o site
  • atanyete martinssábado | 29/11/2014 17:01Hs
    mtt bbbmmmm
  • Ludyner Pantoja segunda-feira | 17/11/2014 15:26Hs
    Excelente
  • Alessandro Schereiberdomingo | 12/10/2014 21:11Hs
    Muito bom!!
PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
Cursos Brasil Escola + DE 1000 OPÇÕES >> INVISTA EM SUA CARREIRA! <<
Conteúdos exclusivos da português infantil.
CURSO DE PORTUGUÊS INFANTIL
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos sobre a reforma ortográfica.
NOÇÕES DA REFORMA ORTOGRÁFICA
12x R$ 6,66

sem juros

COMPRAR
Conteúdos exclusivos de inglês para crianças.
CURSO DE INGLÊS INFANTIL
12x R$ 6,66

sem juros

COMPRAR
Conteúdos exclusivos sobre o ENEM.
PREPARATÓRIO ENEM 2015
12x R$ 10,83

sem juros

COMPRAR
  • SIGA O BRASIL ESCOLA
R7 Educação