Topo
pesquisar

Problemas Matemáticos

Matemática

PUBLICIDADE

Os problemas matemáticos são resolvidos utilizando inúmeros recursos matemáticos, destacando, entre todos, os princípios algébricos, os quais são divididos de acordo com o nível de dificuldade e abordagem dos conteúdos. Nas séries iniciais os cálculos envolvem adições e subtrações; posteriormente, multiplicações e divisões.
Na 2ª fase do Ensino Fundamental os problemas são resolvidos com a utilização dos fundamentos algébricos, isto é, criamos equações matemáticas com valores desconhecidos (letras). Observe algumas situações que podem ser descritas com utilização da álgebra.


O dobro de um número adicionado com 4 → 2x + 4.
A soma de dois números consecutivos → x + (x + 1)
O quadrado de um número mais 10 → x² + 10
O triplo de um número adicionado ao dobro do número → 3x + 2x
A metade da soma de um número com 15 → (x + 15)/2
A quarta parte de um número → x/4


Exemplo 1

A soma de três números pares consecutivos é igual a 96. Determine-os.

1º número: x
2º número: x + 2
3º número: x + 4

( x )+(x + 2) + (x + 4) = 96

Resolução

x + x + 2 + x + 4 = 96
3x = 96 – 4 – 2
3x = 96 – 6
3x = 90
x = 90/3
x = 30

1º número: x → 30
2º número: x + 2 → 30 + 2 = 32
3º número: x + 4 → 30 + 4 = 34

Os números procurados são 30, 32 e 34.

 

 Exemplo 2

O triplo de um número natural somado a 4 é igual ao quadrado de 5. Calcule-o:

Resolução:

3x + 4 = 5²
3x = 25 – 4
3x = 21
x = 21/3
x = 7

O número procurado é igual a 7.


Exemplo 3

A idade de um pai é o quádruplo da idade de seu filho. Daqui a cinco anos, a idade do pai será o triplo da idade do filho. Qual é a idade atual de cada um?

Resolução:

Atualmente
Filho: x
Pai: 4x

Futuramente
Filho: x + 5
Pai: 4x + 5

4x + 5 = 3 * (x + 5)
4x + 5 = 3x + 15
4x – 3x = 15 – 5
x = 10

Pai: 4x → 4 * 10 = 40

O filho tem 10 anos e o pai tem 40.


Exemplo 4

O dobro de um número adicionado ao seu triplo corresponde a 20. Qual é o número?

Resolução

2x + 3x = 20
5x = 20
x = 20/5
x = 4

O número corresponde a 4.

Exemplo 5

Em uma chácara existem galinhas e coelhos totalizando 35 animais, os quais somam juntos 100 pés. Determine o número de galinhas e coelhos existentes nessa chácara.

Galinhas: g
Coelhos: c

g + c = 35

Cada galinha possui 2 pés e cada coelho 4, então:

2g + 4c = 100

Sistema de equações

 

Isolando c na 1ª equação:
g + c = 35
c = 35 – g

Substituindo c na 2ª equação:
2g + 4c = 100
2g + 4 * (35 – g) = 100
2g + 140 – 4g = 100
2g – 4g = 100 – 140
– 2g = – 40
g = 40/2
g = 20

Calculando c

c = 35 – g
c = 35 – 20
c = 15

 

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Veja mais!

Equações e Problemas Matemáticos
Interpretando e resolvendo problemas.

Sistemas de Equações
Resolvendo Problemas através de Sistemas de Equações.

Matemática - Brasil Escola

DEIXE SEU COMENTÁRIO
  • rodolfo henrique rothsteindomingo | 12/04/2015 10:04Hs
    me ajuda na solução deste problema. P/executar uma obra em 19 dias,uma firma contrata 15 operários,passado 13 dias, 05 deles abandonam a obra e não são substituidos durante 03 dias.Com quantos operários a firma deverá atacar a obra a partir do dia seguinte p/ concluir dentro do prazo prefixado?
    • Rodolpho Franco de Godoysábado | 25/04/2015 15:34Hs
      Com 20 operários ,
      13 9
  • Wanessa Kely Barros Gomesquarta-feira | 01/04/2015 14:43Hs
    passo a passo é informar como é realizado o conteúdo mostrando assim como monta a equação e assim realizar os problemas
  • Jorge da Silvasegunda-feira | 16/03/2015 11:37Hs
    Excelente! Lembrei-me do livro de admissão ao ginásio, ano 1960.
PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
Cursos Brasil Escola + DE 1000 OPÇÕES >> INVISTA EM SUA CARREIRA! <<
AULAS AO VIVO DO ENEM
AULAS AO VIVO DO ENEM
12x R$ 20,83

sem juros

COMPRAR
Motivação a Leitura e a Escrita
MOTIVAÇÃO A LEITURA E A ESCRITA
12x R$ 6,66

sem juros

COMPRAR
PORTUGUÊS PARA O ENEM
PORTUGUÊS PARA O ENEM
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos sobre química
CURSO DE QUÍMICA
12x R$ 10,83

sem juros

COMPRAR
  • SIGA O BRASIL ESCOLA
R7 Educação