Topo
pesquisar

Introdução à Função

Matemática

Na Matemática, o conceito de função é inteiramente ligado às questões de dependência entre duas grandezas variáveis. Toda função possui uma lei de formação algébrica que relaciona dois ou mais conjuntos através de cálculos matemáticos. Dizemos que para toda função temos um conjunto denominado domínio e sua respectiva imagem.
Por exemplo, podemos estabelecer uma relação de dependência entre o preço do litro do combustível e a quantidade de litros usados no abastecimento de um carro. Suponhamos que o preço do litro de gasolina seja R$ 2,50, dessa forma, podemos determinar a seguinte função y = 2,5 * x, que determina o preço a pagar y em decorrência da quantidade de litros abastecidos x.

A partir dessa função podemos construir a seguinte tabela de valores:


Toda situação problema envolvendo relações entre grandezas, é determinada por uma lei de formação algébrica. Observe mais um problema relacionado a uma situação cotidiana.

Numa viagem, um automóvel mantém uma velocidade constante de 60 km/h. Com o passar do tempo, esse veículo irá percorrer uma determinada distância. De tal modo, podemos determinar a distância percorrida pelo veículo relacionando a velocidade média e o tempo do movimento utilizando a seguinte expressão matemática, D = V * t, onde D: distância, V: velocidade média e t: tempo. Observe a tabela de valores para essa função:

Observe que nesse caso a variável dependente é a velocidade e a variável independente é o tempo.

As funções possuem grande aplicabilidade nas situações em geral relacionadas ao ensino da Matemática. Utilizamos funções na Administração, na Economia, na Física, na Química, na Engenharia, nas Finanças, entre outras áreas do conhecimento.

Observe o exemplo:

Uma indústria de brinquedos possui um custo mensal de produção equivalente a R$ 5.000,00 mais R$ 3,00 reais por brinquedo produzido. Determine a lei de formação dessa função e o valor do custo na produção de 2.000 peças.

A lei de formação será formada por uma parte fixa e outra variável. Observe:

C = 5000 + 3 * p, onde C: custo da produção e p: o número de brinquedos produzidos. Como serão produzidos 2.000 brinquedos temos:

C = 5000 + 3 * 2000
C = 5000 + 6000
C = 11.000

O custo na produção de 2.000 brinquedos será de R$ 11.000,00.


Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Função - Matemática - Brasil Escola

DEIXE SEU COMENTÁRIO
  • lourdes ribeirosábado | 31/05/2014 16:54Hs
    gostei muito omeu desafio sempre foi aprender matematica terminei o ensino medio mas tenho cnsciencia de que nao sei tenho paixao por aprender
  • tiojkhhterça-feira | 06/05/2014 14:47Hs
    quem é o autor do texto?
    • Dalila Rodrigues Matiasquarta-feira | 07/05/2014 14:06Hs
      Olá! O nome do autor do texto está no fim do texto, ou seja, o artigo foi desenvolvido pelo professor de Matemática Marcos Noé.
      Equipe Brasil Escola
      0 1
  • Patrícia casagrandedomingo | 23/03/2014 11:19Hs
    Muito bem elaborada, linguagem simples de fácil compreensão .
PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
Cursos Brasil Escola + DE 1000 OPÇÕES >> INVISTA EM SUA CARREIRA! <<
Conteúdos exclusivos de literatura.
CURSO DE LITERATURA
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos de física.
CURSO DE FÍSICA
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos de matemática.
CURSO DE MATEMÁTICA
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos de redação.
CURSO DE TÉCNICAS DE REDAÇÃO
12x R$ 6,66

sem juros

COMPRAR
  • SIGA O BRASIL ESCOLA
R7 Educação