Topo
pesquisar

Equação do 2º grau sem uso da Fórmula de Báskara

Matemática

PUBLICIDADE

O primeiro registro de equação do 2º grau que se tem notícia foi feito por um escriba, em 1700 a.C., aproximadamente, em uma tábua de argila, cuja apresentação e a forma de resolução era retórica, ou seja, através de palavras, considerada como uma “recita matemática” infalível para solucionar tal tipo de equação e que fornecia somente uma raiz positiva (as raízes negativas só entraram no contexto matemático a partir do século XVIII).

Estamos falando de um período muito anterior ao da descoberta da fórmula de Báskara. Segundo Eves, em seu livro “Introdução à História da Matemática”, os mesopotâmios apresentaram a primeira equação do segundo grau da seguinte forma:

“Qual é o lado de um quadrado, se a área menos o lado dá 870?”

Chamando o lado do quadro de x, o problema, atualmente, produziria a equação: x2-x=870.

Para problemas desta natureza eles tinham a seguinte “receita matemática”:

“Tome a metade de um, multiplique por ele mesmo. Some o resultado ao valor conhecido, em seguida determine a raiz quadrada do valor encontrado e finalmente adicione a metade de um e obterás o valor procurado.”

Vamos aplicar o método dos babilônios para resolvermos o problema proposto anteriormente.

Portanto, o lado do quadrado mede 30.

Verificação da resposta encontrada:

O problema proposto foi: “Qual é o lado de um quadrado, se a área menos o lado dá 870?”.

Descobrimos que o lado mede 30, logo, a área do quadrado é 900. Fazendo a área menos o lado→ 900 – 30 =870. Verifica-se que a resposta é mesmo correta.

Outro exemplo: Resolver a equação x2-x=12 ou x2-x-12=0.

Solução:

Metade de 1 = 0,5

Multiplique por ele mesmo: (0,5)*(0,5) = 0,25

Some o resultado ao valor conhecido: 0,25+12 = 12,25

Determine a raiz quadrada do valor encontrado:

Adicione a metade de 1 e encontrarás o valor procurado: 3,5+0,5=4

Portanto, a raiz positiva da equação é 4.

Atenção: a “receita” proposta pelos babilônios só é válida para equações do 2º grau cujas constantes a e b sejam iguais a 1.

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

DEIXE SEU COMENTÁRIO
  • wilson de jesus britosexta-feira | 11/07/2014 21:22Hs
    gostei, muito instrutivo.
  • Tamires Freitasquarta-feira | 28/05/2014 18:26Hs
    Não me ajudou muito, mais ótimo texto !!
  • clenilson guedes monteirosexta-feira | 07/02/2014 14:46Hs
    valeu pela dica amigo, muito bom a explicaçao
  • Antonio Pinheiro Marinhosexta-feira | 24/01/2014 10:34Hs
    Gostei muito. O texto está completo. Obrigado.
PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
Cursos Brasil Escola + DE 1000 OPÇÕES >> INVISTA EM SUA CARREIRA! <<
Conteúdos exclusivos de ciências para crianças.
NOÇÕES DA REFORMA ORTOGRÁFICA
12x R$ 6,66

sem juros

COMPRAR
Conteúdos exclusivos sobre redação
CURSO DE REDAÇÃO
12x R$ 10,83

sem juros

COMPRAR
CURSO DE HISTÓRIA
CURSO DE HISTÓRIA
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos sobre o ENEM.
PREPARATÓRIO ENEM 2015
12x R$ 10,83

sem juros

COMPRAR
  • SIGA O BRASIL ESCOLA
R7 Educação