Topo
pesquisar

As bissetrizes dos quadrantes

Matemática

O plano cartesiano é formado por dois eixos perpendiculares que se cruzam na origem das coordenadas (0,0), estabelecendo quatro quadrantes. A intersecção perpendicular dos eixos forma ângulos de 90º.

No plano cartesiano, ao traçarmos uma reta, que passa pelo ponto (0,0) formando um ângulo de 45º com a abscissa (eixo horizontal), estamos dividindo um quadrante ao meio e determinando a sua bissetriz.

Podemos traçar as bissetrizes dos quadrantes de duas formas: bissetriz dos quadrantes pares e bissetriz dos quadrantes ímpares.


Bissetriz dos quadrantes ímpares

A bissetriz dos quadrantes ímpares é determinada por uma reta que intercepta o ponto (0,0) traçando as bissetrizes dos quadrantes I e III.


O coeficiente angular será igual a m = tg 45° = 1. Um dos seus pontos será (0,0) e todos os outros pontos pertencentes à reta b terão as ordenadas e abscissas iguais, por exemplo, (4,4), (5,5), (6,6), (7,7),... .

Considerando qualquer um desses pontos e o coeficiente angular igual a 1, podemos concluir que a reta que representa a bissetriz dos quadrantes ímpares terá - de acordo com os conceitos de Geometria Analítica - a equação fundamental: y – y0 = m (x – x0).
Substituindo o ponto (2,2), temos:

y – 2 = 1 (x – 2)
y – 2 = x – 2
y = x

Bissetriz dos quadrantes pares

A bissetriz dos quadrantes pares é determinada por uma reta que intercepta o ponto (0,0) traçando as bissetrizes dos quadrantes II e IV.



O coeficiente angular será igual a m = tg 135° = -1. Um dos seus pontos será (0,0) e todos os outros pontos pertencentes à reta b terão os valores das ordenadas opostos aos valores das abscissas, por exemplo, (4,-4), (5,-5), (6,-6), (7,-7),... .

Considerando qualquer um desses pontos e o coeficiente angular igual a -1, podemos concluir que a reta que representa a bissetriz dos quadrantes pares terá - de acordo com os conceitos de Geometria Analítica - a equação fundamental: y – y0 = m (x – x0).
y – (–2) = –1 (x – 2)
y + 2 = –x + 2
y = – x

 Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Geometria Analítica - Matemática - Brasil Escola

DEIXE SEU COMENTÁRIO
  • Emilly Oliveiraterça-feira | 17/02/2015 16:44Hs
    Uau, esse texto foi bastante esclarecedor. simples curto e direto.
  • weullyssábado | 29/03/2014 16:07Hs
    nossa muito bom essa materia matematica
  • lindaquinta-feira | 28/02/2013 21:19Hs
    lindo o texto me emocionei
  • Kelly Juliana de Araújo Silvasegunda-feira | 24/01/2011 16:30Hs
    Muito bom. Adorei. Deu para relembrar bem. kelly silva, Maceió.
PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
Cursos Brasil Escola + DE 1000 OPÇÕES >> INVISTA EM SUA CARREIRA! <<
Conteúdos exclusivos da português infantil.
CURSO DE PORTUGUÊS INFANTIL
12x R$ 10,83

sem juros

COMPRAR
Conteúdos exclusivos sobre a reforma ortográfica.
NOÇÕES DA REFORMA ORTOGRÁFICA
12x R$ 6,66

sem juros

COMPRAR
Conteúdos exclusivos de inglês para crianças.
CURSO DE INGLÊS INFANTIL
12x R$ 6,66

sem juros

COMPRAR
Conteúdos exclusivos sobre o ENEM.
PREPARATÓRIO ENEM 2015
12x R$ 10,83

sem juros

COMPRAR
  • SIGA O BRASIL ESCOLA
R7 Educação